Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Discov Med ; 35(179): 1147-1159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058080

RESUMO

BACKGROUND: Emerging evidence indicates the importance of heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) in a number of developmental processes. Little is known regarding its biological function in regulating cervical cancer (CC) progression. In this study, we aim to explore the role of HS6ST2 in CC progression. METHODS: The transcriptome sequencing data of CC tissues from three databases, GSE64217, GSE138080, and GSE63514, was examined for genes with significant changes. The expression profile for HS6ST2 within CC tissue was then assessed through fluorescence quantitative PCR and immunohistochemistry and compared to data from patients with clinicopathological features. A multivariate survival analysis was performed using the COX regression. The real-time quantitative PCR assessed the HS6ST2 expression profile within CC cellular cultures. The results of knocking down HS6ST2, considering the proliferative activity and invasiveness of CC cultures in vitro, were detected through cell viability assay, clonogenic assessment, tumorsphere formation analysis, 3D invasion experiment and transwell assay. The impact of HS6ST2 knockdown in CC proliferation was also evaluated in vivo using a nude mice model. RESULTS: HS6ST2 was severely upregulated within CC tissues across the three explored databases (GSE64217, GSE138080, and GSE63514). Fluorescent quantitative PCR and immunohistochemistry experiments identified HS6ST2 as highly upregulated within patients CC tissues. Survival analysis taking into account the parameters of lymph node metastasis, Federation of Gynecology and Obstetrics (FIGO) stage, depth of invasion, pathological grade, and HS6ST2 expression level demonstrated that individuals with downregulated HS6ST2 exhibited considerably extended progression-free survival (PFS) and overall survival (OS) in comparison to upregulated HS6ST2 cases. According to the findings of COX univariate analysis, the parameters lymph node metastasis, FIGO stage, depth of invasion, pathological grade, and HS6ST2 expression level, all showed a statistically significant correlation with effect upon prognosis of CC patients. The FIGO stage, depth of invasion and expression level of HS6ST2 were identified as independent risk variables influencing CC case prognosis within subsequent COX multivariate analysis. Cell function experiments proved that HS6ST2 knockdown can considerably diminish the proliferative potential, stemness and invasive traits of CC cells. Tumor formation experiments in nude mice in vivo demonstrated that knocking down HS6ST2 can significantly thwart CC cellular proliferative properties within animal models. CONCLUSIONS: The clinicopathological features and the survival time of the patients significantly correlate with the level of HS6ST2 expression in CC tissue samples.


Assuntos
Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Camundongos Nus , Prognóstico , Sulfotransferases/genética , Sulfotransferases/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
2.
Ann Transl Med ; 11(1): 10, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36760244

RESUMO

Background: Ovarian cancer (OV) has been puzzling clinicians because of its poor prognosis. More and more evidence show that the G protein coupled receptor P2RY14 plays a key role in the initiation and progression of various types of human cancer. The purpose of our study is to explore the correlation between P2RY14 and the prognosis of ovarian cancer patients and the relevant mechanism. Methods: First, the differentially expressed gene P2RY14 was screened from The Cancer Genome Atlas (TCGA) database. Explored possible P2RY14 related miRNAs and lncRNAs through multiple public databases, predicted and analyzed the expression level of candidate miRNAs and candidate lncRNAs that can bind to candidate miRNAs in OV through StarBase database. The TIMER database was used to comprehensively analyze the expression of tumor infiltrating immune cells, and to analyze the correlation between the expression level of P2RY14 and the level of immune cell infiltration in OV or the expression level of immune checkpoints. Results: Patients with P2RY14 overexpression had better overall survival (OS) and progression-free interval (PFI). In the Targetscan database, 22 upstream miRNAs that may bind to P2RY14 were predicted. According to the regulatory network constructed by the Cytoscape software, correlation analysis and the role of miRNAs in the prognosis of OV, we first determined that the candidate miRNAs were miR-34c-5p. Then, we predicted the upstream lncRNAs of miR-34c-5p in the StarBase database, the expression level of these lncRNAs in OV in the Gene Expression Profiling Interactive Analysis (GEPIA) database, and the role in prognosis. We determined that LINC00665 is the most potential lncRNA upstream of ovarian cancer miRNA (hsa-miR-34c-5p)-P2RY14. Then, we analyzed the results in the Timer database, suggesting that P2RY14 expression was positively correlated with CD8+T Cell, CD4+T Cell, Macrophage, Neutral and Dendritic cells, and negatively correlated with B cells. Meanwhile, P2RY14 was positively correlated with CD274 and PDCD1. Conclusions: P2RY14 can be used as a new predictive biomarker of ovarian cancer. Intervention of P2RY14 can affect the prognosis of ovarian cancer by affecting LINC00665-miR-34c-5p-P2RY14 axis. These findings provide a potential target for the development of anti-cancer strategies for ovarian cancer.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35297352

RESUMO

BACKGROUND: Ovarian cancer remains a leading cause of mortality in women. It is known that long non-coding RNA (lncRNA) controls various biological processes and pathogenesis of many diseases, including cancers. This study aimed to determine whether LINC00936 and microRNA-221-3p (miR-221-3p) influence the laminin alpha 3 chain gene (LAMA3) in the development of ovarian cancer. METHODS: The expressions of LINC00936, miR-221-3p, and LAMA3 in ovarian cancer and adjacent tissues were assessed. Furthermore, ovarian cancer cells were transfected with vectors with overexpressed LINC00936, miR-221-3p mimic, miR-221-3p inhibitor, and si-LAMA3 to elucidate their functions in ovarian cancer cell proliferation, migration, invasion, angiogenesis, and tumorigenesis. The binding relationship between LINC00936 and miR-221-3p and the relationship between miR-221-3p and LAMA3 were verified to explore the mechanism of action of LINC00936 in ovarian cancer. LINC00936 binds to miR-221-3p as a ceRNA and regulates the expression of LAMA3. RESULTS: LINC00936 and LAMA3 were poorly expressed, while miR-221-3p was highly expressed in ovarian cancer tissues. Over-expression of LINC00936 contributed to decreasing miR- 221-3p expression and increasing LAMA3 expression. LINC00936 overexpression or miR-221- 3p silencing downregulated the levels of PCNA, MMP-2, MMP-9, and VEGF and decreased cell proliferation, migration, invasion, angiogenesis, and ovarian cancer tumorigenesis. CONCLUSION: Collectively, overexpression of LINC00936 suppressed the development of ovarian cancer by competitively binding to miR-221-3p and controlling LAMA3 expression. These results could serve as a novel theoretical base for the treatment of ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , MicroRNAs/genética
4.
Ann Transl Med ; 10(20): 1139, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36388777

RESUMO

Background: This study sought to analyze long non-coding ribonucleic acid (lncRNA) LINC00273 expression in ovarian cancer tissues, and to preliminarily explore its effect on the growth and invasion of ovarian cancer cells and its influencing mechanism. Methods: Quantitative real-time polymerase chain reaction was performed to detect the LINC00273 expression levels of cancerous ovarian tissues and their related cell lines. The ovarian cancer cells with the highest expression of LINC00273 were transfected with a knockdown lentiviral vector targeting the LINC00273 sequence and a negative control plasmid. The effects of the LINC00273 knockdown on the invasion and growth of these cancerous cells were evaluated by clonogenic assays, flow cytometry, EdU (5-Ethynyl-2'-deoxyuridine), Cell Counting Kit-8, and Transwell assays. Western Blot was used to measure the LINC00273 knockdown effects on invasion and migration-related gene expression, and the knockdown effects on the ovarian proliferation ability of the cancer cells in vivo were analyzed by in vivo nude mouse experiments. Results: LINC00273 expression was significantly more increased in the cancerous ovarian tissues than the adjacent tissues. The LINC00273 expression of the ovarian cancer cell lines was higher than that of the normal ovarian epithelial cells. LINC00273 knockdown greatly suppressed the proliferative and clonogenic function of these cancerous cells. The flow cytometry results revealed that LINC00273 knockdown notably induced G0/G1 phase arrest in the ovarian cancer cells. LINC00273 knockdown also promoted E-cadherin expression in the ovarian cancer cells, and inhibited vimentin, matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and N-cadherin, expression to inhibit the invasion and migration ability of the ovarian cancer cells. The in vivo experiments indicated that LINC00273 knockdown suppressed in vivo cancer cell proliferation in the ovaries. Conclusions: LINC00273 is highly expressed in both ovarian cancerous tissues and ovarian cancerous cell lines. LINC00273 knockdown greatly suppressed the proliferative and invasive capabilities of the cancerous ovarian cells. In terms of the molecular process, it may be that the knockdown of LINC00273 promotes E-cadherin and inhibits vimentin, N-cadherin, MMP-2, and MMP-9 expression in cancerous ovarian cells.

5.
J Biophotonics ; 15(1): e202100241, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704671

RESUMO

Early diagnosis of cervical cancer is essential for a good prognosis. Terahertz wave detection technology is a nondestructive and label-free physical detection technology, which can detect and monitor the cancer cells in real time, especially for patients with deep or inaccessible tumors. In this study, a single-cell-layer microfluidic device was developed. After replacing the optical clearing agent, the characteristics of H8, HeLa and SiHa cell lines in adherent and suspended states were detected. Additionally, the absorption increased with increasing cell density. For the mixed suspension cell samples, principal component analysis-support vector machine method was used to identify benign and malignant cell component. After living cells formaldehyde, changes in cell membrane permeability were evaluated to identify the cell survival status (i.e., dead or living) based on terahertz spectroscopy amplitude differences. Therefore, extending the terahertz spectrum detection to the molecular level can characterize the life essence of cells and tissues.


Assuntos
Espectroscopia Terahertz , Neoplasias do Colo do Útero , Feminino , Células HeLa , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA